
Tunnelling and Underground Space Technology 127 (2022) 104578

Available online 4 June 2022
0886-7798/© 2022 Elsevier Ltd. All rights reserved.

Integrated three-dimensional visualization and soft-sensing system for 
underground paste backfilling 

Zhaolin Yuan b, Xiaojuan Ban a,b,e,*, Fangyuan Han b, Xingquan Zhang d, Shenghua Yin c, 
Yiming Wang c 

a Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, 
China 
b School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China 
c School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China 
d Institute of Automation, Chinese Academy of Sciences 
e Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China   

A R T I C L E  I N F O   

Keywords: 
goaf 
Soft-sensing 
3D visualization system 
Laser scanning 
Volume calculation 

A B S T R A C T   

Cemented paste backfilling (CPB) has attracted worldwide attention because of its advantages in the processing 
of waste tailings and underground goafs. A problem of the underground CPB procedure that has received little 
attention is the shortage of devices or techniques for monitoring the real-time backfilling process accurately due 
to the harsh underground environment. Imprecise information of the backfilling progress will mislead the op-
erators to make improper decisions, such as not pausing the transport system promptly or tuning the ratio of 
cement to tailings incorrectly. This study proposes a 3D visualization and soft-sensing system for the cemented 
paste backfilling process. By employing a GeoSLAM ZEB-HORIZON laser scanner to scan the 3D model of the 
underground goaf, the system estimates the backfilling height in real-time according to the accumulated volume 
of filled paste and simulates the backfilling of the underground goaf on web pages. In a real Copper Mine, we 
examined the developed system and soft-sensing technique in goafs and found that the relative error of estimated 
backfilling height is under 10%, which is acceptable in real production. The results indicate that the developed 
backfilling visualization and the soft-sensing techniques provide significant guidance for production manage-
ment in underground backfilling.   

1. Introduction 

In modern mining, the paste backfilling technique (Lu et al., 2018) is 
an advanced waste tailing processing method for recycling the by- 
products of mineral excavation. This technology maximizes the utiliza-
tion of industrial solid waste (tailings, waste rock, slag, and phospho-
gypsum) and controls the movement of the surrounding rock. The 
detailed process of the paste backfilling procedure is illustrated in Fig. 1. 
Cemented paste is produced by bonding tailings, cement, or other hy-
draulic binders and water at the maximum concentration. These mix-
tures are transported into underground goafs through pumping or 
gravity (Yin et al., 2020). 

Most researchers have studied the three main processes of paste 
technology: thickening (Yuan et al., 2020; Núñez et al., 2020; Wu et al., 

2020), mixing preparation (Qi et al., 2018; Li et al., 2019), and trans-
portation (Qi et al., 2018), which significantly affect the paste quality 
and financial cost. This paper presents and solves a problem of the 
cemented paste backfilling procedure that attracts little attention and 
has not been addressed previously. In most underground mines, it lacks 
adequate techniques to monitor the real time progress of backfilling 
tasks for goaf, including the paste height, composition, and remaining 
time for backfilling. Although some previous studies (Wang et al., 2019; 
Mishra et al., 2018) introduce wireless remote measurement and multi- 
sensor to monitor the state of discarded underground goafs, such solu-
tions are not appropriate for backfilling monitoring. The primary diffi-
culty is that the internal space of a goaf will be filled with the cemented 
paste after backfilling, and thus, any devices and sensors installed in the 
goaf can never be recycled. In addition, installing sensors and additional 

* Corresponding author. 
E-mail addresses: b20170324@xs.ustb.edu.cn (Z. Yuan), banxj@ustb.edu.cn (X. Ban), hfy@xs.ustb.edu.cn (F. Han), zhangxingquan2022@ia.ac.cn (X. Zhang), 

csuysh@126.com (S. Yin), ustbwym@126.com (Y. Wang).  

Contents lists available at ScienceDirect 

Tunnelling and Underground Space Technology  
incorporating Trenchless Technology Research 

journal homepage: www.elsevier.com/locate/tust 

https://doi.org/10.1016/j.tust.2022.104578 
Received 30 March 2021; Received in revised form 29 November 2021; Accepted 20 May 2022   

mailto:b20170324@xs.ustb.edu.cn
mailto:banxj@ustb.edu.cn
mailto:hfy@xs.ustb.edu.cn
mailto:zhangxingquan2022@ia.ac.cn
mailto:csuysh@126.com
mailto:ustbwym@126.com
www.sciencedirect.com/science/journal/08867798
https://www.elsevier.com/locate/tust
https://doi.org/10.1016/j.tust.2022.104578
https://doi.org/10.1016/j.tust.2022.104578
https://doi.org/10.1016/j.tust.2022.104578
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tust.2022.104578&domain=pdf


Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 127 (2022) 104578

2

support equipment for communication is extremely difficult and 
expensive in an underground environment. Generally, engineers only 
measured the height and progress of backfilling manually and discon-
tinuously when the back-filling system is paused and the filled paste has 
been solidified. The inaccurate and non-real-time estimation of the 
backfilling progress has two adverse effects in backfilling management:  

• The operators in the paste production station cannot judge whether it 
is time to shut the paste pumping system down. For example, the 
backfilling mission is completed and the operator should stop 
backfilling to achieve accurate roof contact (Lu and Zhang, 2017) 
and reduce the waste of cemented paste. The second example is 
pausing the backfilling and waiting for the paste to be solidified for 
preserving the retaining wall when the paste height reaches the 
setpoint.  

• Generally, with the increase in the backfilling height, the required 
strength of the cemented paste may decline slightly. A lower dosage 
of cement reduces the backfilling cost significantly. As a vital indi-
cator that guides the operators in paste production stations to adjust 
the cement–tailings ratio, the backfilling height is not measured 
accurately in most paste backfilling stations. 

Generally, some other industrial productions also face the problems 
of difficult monitoring, which are usually confronted by some infor-
mational techniques, such as simulation, visualization, and soft- 
sensoring. Chen et al. (2014) developed a 3D monitoring alarm warn-
ing system for tunnel construction. The system provided the 3D inter-
active operation, monitoring data analysis, and automatic alarm 
warning, which improved the safety status analysis of visual construc-
tion site monitoring. A mine water-inrush visualization simulation sys-
tem (Zhou et al., 2012) was designed for the underground mining 
environment to simulate the water-inrush disaster process, which pro-
vided guidance for the operators to take action to improve mining safety. 
Based on the GIS technology and 3D visualization technology, Hu et al. 
(2013) implemented a digital ventilation system for an actual mine. As 
critical components of the digital twin system (Tao et al., 2018; Fuller 
et al., 2020; Liu et al., 2021), real-time visualization and soft-sensoring 
are future-oriented techniques for achieving the goal of Industry 4.0 
(Vachalek et al., 2017) in modern production. 

In this paper, from the perspectives of actual backfilling re-
quirements and the development tendency in industrial techniques, we 
propose a novel pipeline to achieve the soft-sensing of the backfilling 
progress and visualize the real-time backfilling in a three-dimensional 
platform. We first utilize a sophisticated laser radar instrument to 
collect the complete point cloud data of the goaf (LUO et al., 2016). After 
preprocessing the dense point cloud, we slice the goaf evenly along the 

height-axis and compute the volume for each slice. When the paste 
backfilling begins, we accumulate the volume of the fed paste and find 
the corresponding slice to estimate the backfilling height in real time. In 
addition, the most appropriate cement–sand ratio is also recommended 
based on the current backfilling height and the technical parameters. 
Furthermore, an integrated three-dimensional visualization system is 
developed based on the Browser/Server (B/S) architecture, which vi-
sualizes the filled goaf and progress information from three dimensional 
perspective in real time for the operators. 

2. Method 

To achieve the graphical simulation and soft-sensoring of the back-
filling procedure, a systematic pipeline is illustrated in Fig. 2. It includes 
the hardware, data collecting, data preprocessing, backfilling simula-
tion, and the development of the human–computer interface. First, we 
adopted a laser scanner to collect the complete 3D point cloud model of 
the goaf. Next, we cut the original goaf model into slices, cut each slice 
into blocks successively, and estimate the volume for each block based 
on Monte Carlo sampling. We sum up the volumes of blocks belonging to 
the same slice and estimate the volume for each slice. Finally, an asso-
ciative table of the correlation between backfilling height and volume 
was generated according to the volume and height of each slice. Based 
on the generated associative table, we estimate the backfilling height by 
taking advantage of the known accumulative volume of filled paste in 
real time. An integrated system based on the B/S framework is devel-
oped to produce vivid animations of the backfilling progress and 
represent key information simultaneously. 

2.1. Three-dimensional point cloud scanning for goafs 

To collect accurate 3D models of the filled goafs, traditional devices 
for underground surveying and mapping, such as the total station 
(Cosser et al., 2003), cannot meet the requirements for sophisticated 
measurement and visualization. In this project, we employed an 
advanced 3D laser scanner, ZEB-Horizon, which was produced by the 
Geo-Slam company for geological mapping. This instrument was 
composed of a laser lidar, electric machinery, and a handle. The effective 
scanning range was 100 m, which was suitable for the underground 
scanning of tunnels and goafs. When the device was operating, the laser 
continuously rotated to scan the three-dimensional point cloud of the 
underground environment completely. 

We utilized the software Geo-Slam Hub to analyze the original 3D 
data and build the aligned point cloud with scanning trajectories. This 
step is called point cloud registration. After generating the 3D model 
using Geo-Slam Hub, the first task was to align the relative positions of 
the points to the absolute coordinate system. Before we started to scan 
the goaf, we set at least three measurement control points whose 
deterministic absolute coordinates were measured manually. These 
measurement control points with absolute coordinates identified a 
unique affine transformation, including a translation vector and a 
rotation matrix, to transform the scanned points cloud into absolute 
coordinate space. 

Normally, the original point cloud model built from Geo-Slam Hub is 
extremely dense, which brings a computational burden for subsequent 
calculations. Empirically, we diluted the dense point cloud to a sparse 
one and constrained the distance between adjacent points to be 
approximately equal to 1 dm. Furthermore, we eliminated the internal 
noisy points in the goaf manually, including the effects from people, 
vehicles, and entities other than the real rock bodies. The operations 
including coordinate registration and down-sampling were conducted in 
the CloudCompare software. We eliminated noisy points using the 
Geomagic software. 

We introduced the scanning process of the 3D point cloud model of 
the goaf with the laser scanner and preprocessing of the 3D point cloud 
model. The point cloud registration aligned the relative positions of the 

Fig. 1. Typical diagram of paste backfilling.  
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collected points to the absolute coordinate system, which effectively 
calibrated the direction of gravity and allowed us to cut the goaf model 
along the correct direction of gravity for accurate filling height esti-
mation. However, it is unnecessary to hold the absolute coordinates in 
the visualization system when we only focus on a single goaf instead of 
the relationship between the target goaf and surrounding environment. 
Therefore, we transformed the model from the absolute coordinate 
system to the appropriate relative coordinate system with guaranteeing 
the direction of gravity was constant. 

In the actual production, we find that the length of the studied goaf 
was significantly larger than its width and height. Therefore, we rotated 
the model along Z-axis to force the length side to be approximately 
parallel to the X-axis for the best visual experience after moving the 
model to the origin of the coordinates. 

2.2. Slicing and volume calculation for goaf model 

When the backfilling system was operating, the accumulated volume 
of filled paste in the goaf was estimated. An associative table that 
recorded the correlation between the paste volume and height in a 
specific goaf was constructed, which is utilized to estimate the back-
filling height according to accumulated volume of discharged paste in 
real time. 

Intuitively, we could construct the associative table by cutting the 
goaf into small slices evenly along the height direction and calculating 
the volume of each slice. However, the shape of the goaf was non- 
convex. As a result, there were some vacancies in the slices, which 
increased the difficulties in calculating the slice volume. As shown in 
Fig. 3(a), the slice with vacancies was concentrated at the bottom and 
top regions of the goaf. It was extremely difficult to estimate the volume 
of a slice accurately that was discontinuous and filled with holes. A 
multiple-cutting process was proposed to improve the accuracy of the 

estimated volume for such slices with vacancies. After cutting the goaf 
along the Z-axis, we attempted to cut each slice into small blocks along 
the X-axis successively. We built several planes that were perpendicular 
to the X-axis, the direction of the side length in the goaf, to cut each slice 
into a blocks set. Fig. 3(b) illustrates the left-most block of the original 
slice in Fig. 3(a). Compared with a slice with many vacancies, the points 
in the block were continuous. We estimated the volume of each slice 

Fig. 2. Pipeline of this research.  

Fig. 3. Multiple-cutting process for goaf model along Z-axis and X-axis.  
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indirectly by tallying up the volumes of all the blocks. 
Next, we introduce the procedure for estimating the volume of each 

small non-closed block. Generally, based on the format of 3D models, the 
methods for calculating the volume for an irregular geometry are 
divided into mesh models and point cloud models. The methods based 
on mesh models assume the mesh model is enclosed, which requires 
reconstructing the point cloud to mesh model and patching the non- 
closed surface. However, as shown in Fig. 3(b), the surface at the top, 
bottom, and some side faces were all missing because of the multiple- 
cutting operation, which made reconstructing the surface of the block 
extremely difficult. Therefore, a point-cloud-based algorithm was 
adopted to estimate the volume of each block directly to avoid the 
requirement of three-dimensional reconstruction. 

The method was implemented based on Monte Carlo sampling using 
the following steps:  

1. An axis-aligned cuboid bounding box was constructed, as shown in 
Fig. 3(b), for points in the block, and the volume V of the box was 
calculated.  

2. The points in the bounding box were sampled randomly N times, and 
the number of times X that the samples were located inside the point 
cloud block was counted. 

3. The volume of the block, V̂g = V×X
N , and the deviation of the esti-

mation, 
̅̅̅̅̅̅̅̅̅̅̅̅̅
VVg − V2

g
N

√

, were estimated based on statistics. 

The key issue is to judge whether one sampled point is inside or 
outside of the non-closed point cloud block. We introduced the inside-
–outside classification method from Adams and Dutré (2003) to solve 
this classification problem. 

Fig. 4 shows a simple example of the inside–outside classification. p1 
is a vertex of the triangular pyramid, s2 is inside the pyramid, and s1 is 
outside the model. Among all the vertices in the triangular pyramid, p1 is 
the nearest point to s1 and s2. We define the normal vector of the pyr-
amid at p1 as n→, which is the average of the normal vectors of the 
adjacent faces around p1, including n→1, n→2, and n→3. Whether the given 
point s1 is inside or outside the model can be judged by calculating the 
inner product between p1s1

⟶ 
and n→. For instance, the inner product 

p1s1
⟶

⋅ n→⩾0 corresponds to an angle between the two vectors of 0◦–90◦, 
which means that the point s1 is outside of the model. For the point s2, 
because p1 is a acute or obtuse angle vertex in the triangular pyramid, 
the inner product p1s2

⟶
⋅ n→⩽0 is not sufficient to prove that s2 is inside the 

model. However, in the ideal case, the surface of a dense point cloud at 
vertex p1 is sufficiently smooth and assuming that p1 is the closest point 
for a given s2 between all the points in the model surface, the condition 
of the negative inner product is sufficient to prove that s2 is inside the 
model. 

The inside–outside classification algorithm is an effective way to 
judge whether a point is located inside a point cloud block. The normal 
vector n→p of any point in the model is determined based on the sur-
rounding points and the center of the model. For any sampled point s in 
the axis-aligned bounding box, we find the closest point p in the point 
cloud and calculate the inner product between ps⟶ and np to judge 
whether the point s is inside the point cloud block. 

With the Monte Carlo method above, when the number of samples N 
is large enough, the estimated volume of the point cloud block V̂g is 
relatively accurate. Specifically, with the assumption that the volume of 
the goaf is larger than 13 of the bounding box volume, we proved that the 
confidence level of the hypothesis that the relative error of the volume 
calculation was lower than 0.1% was over 95% when the number of 
samples N > 8,000,000. The detailed analysis and proofs are presented 
in the Appendix A.1. This approach is computationally affordable for a 
high-performance computer to sample and classify each point for such 
cases. At the same time, sampling and inside–outside classification for 
each block is completely executed offline before backfilling, and it will 
not affect the performance for online application. 

2.3. Real-time soft-sensing for paste height in backfilling 

In Section 2.2, we introduced the method to calculate the volume of 
each slice in the point cloud based on multiple-cutting operations, 
Monte Carlo sampling, and the inside–outside classification method. The 
generated associative table helped to determine the filling height ac-
cording to the current accumulated volume of paste when the backfilling 
was under way. 

As shown in Fig. 5, we assumed that the height of the goaf was H and 
the height of each slice was h. The accumulative volume of discharged 
paste Vin was measured by integrating the monitored flow rate ft from 
the start time to the current time t. We defined vi to denote the volume of 
the i-th slice. The m-th slice in the goaf being backfilled virtually was 
determined according to the conditions 

∑m− 1
i=1 vi <= Vin and 

∑m
i=1vi > Vin. The current backfilling height H is estimated as follows: 

H =

(

m − 1
)

∗ h+
Vin − (v1 + v2 + … + vm− 1)

vm
∗ h. (1)  

Based on production experience, when the height of the backfilling paste 
is available, the optimal cement–tailing ratio is also determined. The 
developed system requires the operator to input the initial 
cement–tailing ratio Ri, final cement–tailing ratio Rf , and desired 
backfilling height Hs before backfilling. The recommended 
cement–tailing ratio Rt is solved by solving a simple linear interpolation: 

Rt = Ri +

(
Rf − Ri

)(
H − Hi

)

Hs − Hi
, (2)  

where Hi is the initial paste height before the current backfilling oper-
ation. The inferred ratio Rt is transmitted to the intelligent control sys-

Fig. 4. Illustration of inside–outside classification.  Fig. 5. Filling height calculation of the paste.  
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tem to regulate the weight of cement based on the current rate of the 
tailing flow in real time. Despite the employed linear operational 
strategy being simplified, the precision of the control ratio is acceptable 
in industrial production. The quality of produced paste is improved, and 
the cost of cement is reduced significantly. 

2.4. Visualization system for paste backfilling 

In this paper, we developed an integrated visualization system for 
backfilling using a Browser/Server architecture. The implementation of 
the complete system is divided into the backend part and frontend part 
as shown in Fig. 6.  

1) Backend: The backend part is running on a high performance server 
to provide resources identifications and the analysis of the points 
cloud model and production data. The FreeOpcUa, an open source 
OPC software written in Python, is employed to collect the real-time 
production data from devices in time series format. The data is sto-
raged in MongoDB database, which is a NoSQL database with high 
flexibility and throughput. The system employs Point Cloud Library 
(PCL) to process 3D point cloud. The utilized functions include 
format conversion, point downsampling, and inside–outside classi-
fication. 

As the developed web system follows the Browser/Server archi-
tecture, the server side is implemented based on Django framework 
which is a high-level web development framework in Python and 
capable of building integrated websites. It handles the web requests 
and resource identification coming from the frontend. 

2) Frontend: The frontend part provides visual information and nu-
merical information of backfilling process in web pages for users. 
Vue.js, a real-time responsive framework, is employed as the core 
component in frontend to update the web page dynamically. To 
display the 3D model of the filled goaf for operators, we introduce 
the Three.js library to render the 3D model and provide interactive 
operations on web pages in real-time. By checking the displayed 
animations and information on the web system, the operators could 
evaluate the status of real-time productions and make decisions on 
the backfilling devices. 

The system renders the real-time 3D animations and numerical 
data of backfilling on the web page. Operators could observe the current 
status of the production, including current height, volume, the per-
centage, and the left duration. The platform also supports manifold 
interactions, such as dragging and rotation, for providing various 
perspectives of the filled goaf. Furthermore, the system also analyzes the 

accumulative percentage of the backfilling height and infer the theo-
retically most saving cement–tailings ratio, which satisfies the 
required paste strength. The controlling signal is written into production 
system automatically based on OPC-UA protocol. 

We deployed the complete system and services on a high- 
performance computer IW4200-4G server with the Ubuntu 16.04 
operating system. The computer has 128 GB RAM and two Intel Xeon E5- 
2620V4 processors. 

3. Evaluation in actual backfilling production 

To demonstrate the feasibility and accuracy of the proposed soft- 
sensing algorithm, we examined the backfilling visualization and soft- 
sensing system with real cemented paste backfilling production on a 
copper mine setup located at Chambishi in the Copperbelt province of 
Zambia. Two main research questions are answered in this section: (i) 
Does the proposed pipeline measure the volume of each slice in goaf 
model accurately? (ii) Is the soft-measured backfilling height accurate 
enough for guiding industrial production? First, we introduce the basic 
information of the experimental goafs and how the 3D point cloud 
model was scanned by the laser scanner. Next, the detailed experimental 
results for estimating the volume of the slices and soft-sensing for the 
backfilling height are discussed. Finally, we will show the screenshots of 
developed 3D backfilling visualization system, which were captured 
during backfilling productions. 

3.1. Details of goaf and model scanning 

The three investigated goafs waiting to be backfilled underwent their 
last exploitations in August 2019. The person who was responsible for 
the surveying and mapping activities held a GeoSLAM ZEB-HORIZON 
3D laser scanner to collect complete point cloud data of goafs. For 
each goaf, underground scanning lasted for about 2 h, and each collected 
point cloud included about 3 million extremely dense points. We aligned 
the points in the appropriate coordinate system after the evacuation and 
subsequently removed the outliers and noisy points in the model. Fig. 7 
illustrates one of the final goaf models with about 80,000 points from the 
front and vertical views. 

3.2. Slicing and volume calculation 

In the first experiment, the goaf shown in Fig. 7 is employed to 
evaluate the accuracy of the proposed technique for calculating the 
volumes of the point cloud and slices. The height and the length of the 
goaf are measured about 11 and 110 m, respectively, corresponding to a 
volume of about 7652m3. The comparisons between the multiple cut and 
single cut were studied. In the single cut experiment, the goaf is merely 
sliced along height-axis, without further splitting each slice into blocks. 
In order to estimate the volume of the complete slices in single-cutting 
experiment, we still employ Monte Carlo sampling, as same as the 
multiple cut experiment. 

Fig. 8 illustrates the accurate volume of the goaf and the estimated 
volume of twenty slices using the two slicing methods. The comparative 
results present that the multiple-cut method, which cut the slice into 
blocks and estimated the volume for each part, outperformed the single- 
cut method. Most of the error in the single-cut method was from the top 
and bottom slices because these two regions are irregular and filled with 
vacancies. In the multiple cut method, after the first slice along the 
height-axis, we cut each slice along the horizontal axis, and the points in 
one slice were dispersed into several blocks. As Section 2.2 discussed, 
whether the cutting plane was located on the vacancy or area filled with 
points, such as Fig. 3(b), does not affect the proposed method for judging 
whether the point was in the goaf. This guarantees the accuracy of 
volume estimation for each slice when we choose the cutting planes 
uniformly along the long side. 

We also conducted an ablation experiment to demonstrate that the Fig. 6. Implementation of the backfilling visualization system.  
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point-cloud-based Monte Carlo method is a rational choice for esti-
mating the volume of each block. In the ablation study, we reserve the 
multiple-cutting operation and replace the Monte Carlo method with the 
convex hull method to measure the volume of each block. The convex 
hull method builds the convex hull of the points in a block and re-
constructs the mesh surface whose volume can be solved directly. The 
second row in Fig. 8 shows the estimated volume of all the slices based 
on the convex hull method. The Monte Carlo sampling outperformed the 
convex hull method significantly. Although the convex hull method does 
not suffer from statistic deviations like the Monte Carlo method, it finds 
the smallest convex polyhedron to contain the given point set. However, 
the real shape of the block could be non-convex, which caused the 
estimated volume of the block to be slightly larger than the actual 

volume, and the magnitude of the error was influenced by the degree of 
non-convexity. In contrast, the shape of the points in the block did not 
affect the Monte Carlo calculation and the inside–outside classification 
method. 

3.3. Soft-estimation for Paste height 

Next, we will examine the accuracy of the proposed backfilling 
height estimation algorithm on three actual backfilling goafs. When the 
backfilling production is ongoing, the real-time flow rate of the pumped 
paste is monitored with the unit as m3/h. The proposed soft-sensoring 
algorithm infers the real-time backfilling height according to the accu-
mulated volume of filled paste and the three-dimensional model of goaf. 

Fig. 7. Point cloud model of goaf obtained by GeoSLAM ZEB-HORIZON.  

Fig. 8. The comparison of different methods for estimating the volume of goaf and slices.  
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In this experiment, we compared the measured and estimated heights for 
our system on three goafs. 

Before backfilling, a retaining wall was built beside the goaf to 
prevent the leakage of paste. Consecutive backfilling increased the 
pressure on the retaining wall, which introduced a risk of destroying the 
wall and causing severe accidents. In general, the complete backfilling 
procedure for one goaf is scheduled to execute three or four times based 
on the size of the goaf, which allows time for the paste to harden. 
Because it is dangerous and difficult to measure the real-time accurate 
height of paste in the goaf during backfilling, we only collected the 
ground-truth records when the backfilling system was paused and the 
filled paste had solidified, which guaranteed that the measurement was 
relatively accurate and safe. 

Fig. 9 and Table 1–3 illustrate the comparisons of the measured and 
estimated heights on three goafs. The results demonstrate that the 
estimated heights are close to the accurate measured height and the 
accumulated error was less than 10% approximately. Specially, the 
method still makes accurate estimations, even in the beginning and 
ending phases, in which the shape of goaf is uniform and the growth rate 
of paste height is unstable. The estimation error of the proposed method 
is controlled under 1 m, which is acceptable for guiding the operators to 
shut down the paste pumping or adjusting the cement–tailings ratio. In 
the last column in Table 1–3, the analyzed optimal cement–tailings ratio 
according to estimated paste height are presented and written to the 
cement control system in real-time. 

3.4. Cemented paste backfilling visualization system 

A cemented-paste backfilling visualization system was developed 
based on the B/S architecture, which could visualize the original goaf 
model and provide a detailed animation of the backfilling progress. As 
shown in Fig. 10, the operators are able to monitor all necessary infor-
mation about backfilling by employing the system, including the 
following:  

1. Complete information about the filled goaf itself, such as the height, 
volume, and shape of the goaf.  

2. The planning of the current backfilling, including the target height 
and target volume. 

3. Measurement of real-time information and some inferred informa-
tion by soft-sensing, such as the volume, estimated backfilling 
height, and estimated remaining time. 

4. Discussion 

Although this study solved the soft-sensing and visualization 

problem of backfilling preliminarily, three vital issues exist in the real 
production, which are unavoidable:  

• Filling shrinkage of cemented paste (Meddah and Tagnit-Hamou, 
2009) makes the measured volume of filled paste slightly larger 
than the accurate volume of filled coagulated paste. The degree of 
shrinkage is closely related to the internal relative humidity, mate-
rials, and ratio of cement to tailings. Correcting the error from paste 

Fig. 9. Illustrating the estimated paste height in real-time (red line),the measured points of accurate paste height (green points).  

Table 1 
Tabular evaluation of estimated backfilling height for goaf-1.  

Paste 
volume 
(m3) 

Accurate 
height (m) 

Estimated 
height (m) 

Absolute 
error (m) 

Relative 
error 

Cement- 
tailing 
ratio 

2654.56 2.8 3.05 0.25 8.93% 0.11 
5122.25 5.1 5.53 0.43 8.43% 0.10 
6177.42 6.1 6.68 0.58 9.51% 0.10 
7221.86 7.4 8.11 0.71 9.59% 0.10 
7647.32 10.5 11.45 0.95 9.05% 0.08  

Table 2 
Tabular evaluation of estimated backfilling height for goaf-2.  

Paste 
volume 
(m3) 

Accurate 
height (m) 

Estimated 
height (m) 

Absolute 
error (m) 

Relative 
error 

Cement- 
tailing 
ratio 

670.78 4.1 4.42 0.32 7.80% 0.12 
1759.59 6.7 6.77 0.07 1.04% 0.11 
2863.55 8.3 8.76 0.46 5.54% 0.11 
4920.42 11.9 12.14 0.24 2.02% 0.10 
6804.82 14.2 14.97 0.77 5.42% 0.10 
8039.92 15.8 16.78 0.98 6.20% 0.09 
9195.91 20.7 21.66 0.96 4.64% 0.08  

Table 3 
Tabular evaluation of estimated backfilling height for goaf-3.  

Paste 
volume 
(m3) 

Accurate 
height (m) 

Estimated 
height (m) 

Absolute 
error (m) 

Relative 
error 

Cement- 
tailing 
ratio 

1102.03 2.8 2.99 0.19 6.79% 0.12 
2865.79 5.0 5.22 0.22 4.40% 0.12 
4948.92 7.1 7.43 0.33 4.65% 0.11 
6234.20 8.5 8.67 0.17 2.00% 0.11 
8652.72 10.3 10.87 0.57 5.53% 0.10 
12256.62 13.3 14.04 0.74 5.56% 0.10 
14962.26 15.7 16.58 0.88 5.61% 0.09 
17269.60 21.2 22.16 0.96 4.53% 0.08  
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shrinkage using prior technique parameters is a topic for which we 
have follow-up work planned.  

• Paste, as a kind of granular media, has relatively high viscosity and 
more complex dynamic features compared with water and other 
Newtonian fluids. The filled paste will form a dynamical cone and 
spread outward slowly until coagulating. The height of the coagu-
lated paste is related to the distance from the feeding port to each 
position. Generally, there are several feeding ports distributed on the 
highest positions in roof that discharge paste together. The proposed 
pipeline is a reasonable simplification in ideal conditions which as-
sumes that the backfilling heights at all positions are equal. However, 
this assumption can be further improved by introducing fluid kine-
matics to simulate the shapes, positions, and velocities of paste 
particles during backfilling. More vivid visualization results and 
more accurate instructions for production could be achieved with 
improvements to the procedure. 

• Roof-contacted filling is one of the most critical issues in the back-
filling. In most cases, the vent holes are drilled in the highest points 
of the roof for discharging air, which promotes the roof-contacted 
backfilling. However, when the vent holes are insufficient or the 

positions of the holes are improper, some pressure-tight spaces may 
be generated, which prevents the goaf to be filled with the produced 
paste completely. When the roof of the goaf is rugged, unsuccessful 
roof-contacting appears more frequently and brings potential secu-
rity risks to the filling body quality. In the actual production, it is 
difficult to judge whether the filled paste connects the roof. In the 
future study, the positions of the marked vent holes, the shape of the 
roof, and the backfilling pressure produced from the height differ-
ence between the backfilling pump and the underground goafs are 
supposed to be incorporated in the analysis of the backfilling prog-
ress. The visualization system will provide more detailed roof- 
contacted information in future version, such as displaying the dis-
tributions and the volumes of the pressure-tight spaces.  

• The last problem is closely related to production management, which 
restricts the application of our system in some mining setups. 
Sometimes, the produced cemented paste is split into several flows to 
backfill different goafs simultaneously underground. Most moni-
toring systems cannot capture the accurate volume of the flow in 
each sub-pipe, which restricts us to estimate the accumulated volume 
of filled paste in one goaf exactly. Machine learning methods might 

Fig. 10. Backfilling visualization system.  
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be a feasible way to predict the ratio of allocated paste in each pipe 
according to the historical experience (Yuan and Li, 2022). 

5. Conclusion 

In this study, a technical pipeline was proposed, and an integrated 
system for measuring the real-time progress of backfilling was devel-
oped. GeoSLAM ZEB-HORIZON, a 3D laser scanner, was utilized to scan 
the required point cloud data accurately. After preprocessing the orig-
inal point cloud by filtering, rotating, and a series of operations, we 
sliced the goaf along the height axis and computed the volume for each 
slice based on multiple cuts, Monte Carlo sampling, and inside–outside 
classification. During backfilling, the height of the filled paste could be 
estimated in real-time by finding the corresponding slice for which the 
accumulated volume from the bottom was approximately equal to the 
volume of filled paste. The optimal ratio of cement to tailings was also 
recommended based on the current backfilling height and manual input 
parameters. The estimated backfilling height with other progress in-
formation is presented in the backfilling visualization platform, which is 
a web system developed based on the B/S architecture. The proposed 
technique pipeline and the developed software application solves the 
problems of shortages of devices and techniques for monitoring the 
underground backfilling information in real time. More complicated and 
helpful functions, such as planning for intermittent backfilling, safety 
assessment warning, and Roof-contact judgement will be committed in 
future studies. 
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Appendix A 

A.1. Analysis of deviation and confidence intervals for Monte-Carlo-based volume estimation 

According to the definition in Section 2.2, we assume that the volume of the bounding box and point cloud block are V and Vg, respectively. The 
sampling points are generated repeatedly N times in the bounding box uniformly, and whether the point is in the block or not is a binary random 

variable that follows a Bernoulli distribution p
(

X = 1) =
Vg
V . A binomial distribution X ∼ B

(
N,

Vg
V

)
describes the distribution of the number of times the 

sampled point was located in the block with mean E(x) and variance D(x), defined as follows: 

E
(

X
)

=
NVg

V
,

D
(

X
)

=
NVg

(
V − Gg

)

V2 .

(3)  

According to the central limit theorem (CLT) (Wikipedia contributors, 2020), the distribution of X approaches a normal distribution when N is 
sufficiently large. Thus, the estimated volume of the point cloud model V̂g follows a normal distribution: 

E
(

V̂ g
)

=
V × E(X)

N
= Vg,

D
(

V̂ g
)

=
V2D

(
X
)

N2 =
V2 × N ×

Vg

V
×

V − Vg

V
N2

=
Vg
(
V − Vg

)

N
.

(4)  

V̂g is an unbiased estimate of Vg, and the deviation D(V̂g) decreases when we increase N, the number of samples, or build a tighter bounding box that 

minimizes V − Vg. To achieve a relative error |Vg − V̂|
Vg 

that is lower than 0.1% with 95% confidence, we can calculate the minimum N according to the 
95% confidence intervals of the standard normal distribution ( − 1.96,1.96). 

1.96 ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V − Vg

NVg

√

⩽0.01→N⩾
(

1.96
0.001

2) V − Vg

Vg
. (5) 
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Under the reasonable assumption of Vg⩾1
3 V, we obtain N⩾7,683,200. 
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